In 1106.3197 conventions: In Euclidean signature, we can generate matrices via the Mathematica code:
ClearAll[cliffordGenerators]; cliffordGenerators[1] = {PauliMatrix[1]}; cliffordGenerators[2] = {PauliMatrix[1], PauliMatrix[2]}; cliffordGenerators[3] = {PauliMatrix[1], PauliMatrix[2], PauliMatrix[3]}; cliffordGenerators[4] = Join[ TensorProduct[PauliMatrix[1], #] & /@ cliffordGenerators[3], {TensorProduct[PauliMatrix[2], IdentityMatrix[2]]}, {TensorProduct[PauliMatrix[3], IdentityMatrix[2]]} ]; cliffordGenerators[n_?EvenQ] /; n > 3 := cliffordGenerators[n] = Join[ (TensorProduct[PauliMatrix[1], #] & /@ cliffordGenerators[n - 2]), {TensorProduct[PauliMatrix[2], Nest[TensorProduct[IdentityMatrix[2], #] &, IdentityMatrix[2], n/2 - 2]]}, {TensorProduct[PauliMatrix[3], Nest[TensorProduct[IdentityMatrix[2], #] &, IdentityMatrix[2], n/2 - 2]]} ];
In the conventions of “Park, Jeong - Hyuck.(2016).Lecture Note on Clifford Algebra : Expanded version” In this convention, gamma matrices can be generated as
ClearAll[\[Gamma]]; \[Gamma][2, 1] = PauliMatrix[1]; \[Gamma][2, 2] = PauliMatrix[2]; \[Gamma][d_?EvenQ, i_] /; i <= d - 2 := ArrayFlatten[TensorProduct[ \[Gamma][d - 2, i], PauliMatrix[1]]]; \[Gamma][d_?EvenQ, i_] /; d - i == 1 := ArrayFlatten[TensorProduct[ IdentityMatrix[2^((d - 2)/2)], PauliMatrix[2]]]; \[Gamma][d_?EvenQ, i_] /; d - i == 0 := ArrayFlatten[TensorProduct[ IdentityMatrix[2^((d - 2)/2)], PauliMatrix[3]]]; ClearAll[\[CapitalGamma]]; \[CapitalGamma][d_?EvenQ] := IdentityMatrix[2^(d/2)]; \[CapitalGamma][d_?EvenQ, j__] /; Apply[And, 1 <= # <= d & /@ {j}] := Block[ {permutations, signatures},{permutations, signatures} = Transpose[{#, Signature[#]} & /@ Permutations[{j}]]; Signature[{j}]/Length[signatures] signatures.(Apply[Dot, Table[\[Gamma][d, i], {i, #}]] & /@ permutations)];