Phys209: Mathematical Methods in Physics I Homework 12

Soner Albayrak[†]

⁺Middle East Technical University, Ankara 06800, Turkey

Policies

- Please adhere to the *academic integrity* rules: see my explanations here for further details!
- For the overall grading scheme or any other course-related details, see the syllabus.
- Non-graded question(s) are for your own practice!
- Unless stated otherwise, you are expected to show your derivation of the results.
- The homework is due December 29th 2023, 23:59 TSI.

(1) **Problem One**

We have discussed in class that any linear ordinary differential equation can be converted to a system of first order differential equations. Let us review this.

(1.1)(1pt)

Consider the differential operator

$$\mathcal{D} :: \left(\mathbb{C} \to \mathbb{C}\right) \to \left(\mathbb{C} \to \mathbb{C}\right)$$
$$\mathcal{D} = \frac{d^3}{dt^3} + \cos(t)\frac{d^2}{dt^2} + t^3\frac{d}{dt} + 1$$

where 1 at the end stands for the *identity higher order function*, taking any function $f :: \mathbb{C} \to \mathbb{C}$ to itself.

Let \mathcal{A} be the identity $(\mathcal{D} \cdot f)(x) = 0$. How would you express \mathcal{A} as a first-order differential equation of a column matrix?

(1.2)**Bonus** question

We reviewed in the last lecture that such a first order differential equation can always be formally solved: we first convert it to Volterra integral equation, and then solve it iteratively: in the most common usage of this approach in Physics, we obtain the so-called Dyson series. Look into these concepts more for your own personal development!

Problem Two (2)

in this approach.

One can also convert linear ordinary differential equations with constant coefficients to a system of first-order differential equations, but that rarely makes sense: one can already generically solve such questions by finding the roots through the *characteristic equation*, exponentiating them, and taking their superposition. We discussed this procedure in detail, but let us see how that characteristic equation emerges

(5 points)

(not graded)

(2.1) (0.5pt)

Consider an order-n linear ordinary differential equation with constant coefficients:

$$f^{(n)}(x) + a_1 f^{(n-1)}(x) + \dots + a_n f(x) = 0$$

Show that it can be rewritten in the form

$$\frac{d}{dx} \begin{pmatrix} f(x) \\ f'(x) \\ \vdots \\ f^{(n-2)}(x) \\ f^{(n-1)}(x) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_1 \end{pmatrix} \begin{pmatrix} f(x) \\ f'(x) \\ \vdots \\ f^{(n-2)}(x) \\ f^{(n-1)}(x) \end{pmatrix}$$

(2.2) (1pt)

Consider the modified version of the square matrix found in the previous section:

$${}_{n}\mathcal{M} = \begin{pmatrix} -\lambda & 1 & 0 & \dots & 0 \\ 0 & -\lambda & 1 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & 1 \\ -a_{n} & -a_{n-1} & -a_{n-2} & \dots & -a_{1} - \lambda \end{pmatrix}$$

which is same matrix as before but the diagonal entries are shifted with $-\lambda$. We would like to compute the determinant of this matrix.

Remember that the determinant is defined as

$$\det\{\}_n \mathcal{M} = \sum_{i_1,\ldots,i_n} \epsilon_{i_1 i_2 \ldots i_n} \mathcal{M}_{1 i_1} \mathcal{M}_{2 i_2} \ldots \mathcal{M}_{n i_n}$$

for the usual Levi-Civita symbol ϵ . Here, \mathcal{M}_{ik} denotes the entry of the matrix \mathcal{M} at the *i*-th row and *k*-th column.

This definition of the determinant is powerful enough for us to compute it without specifying the value for *n*. To do that, observe that the only nonzero entries for \mathcal{M}_{1i_1} are $\mathcal{M}_{11} = -\lambda$ and $\mathcal{M}_{12} = 1$, therefore

$$\det \mathcal{M} = -\lambda \sum_{i_2,\dots,i_n} \epsilon_{1i_2\dots i_n} \mathcal{M}_{2i_2} \mathcal{M}_{3i_3} \dots \mathcal{M}_{ni_n} + \sum_{i_2,\dots,i_n} \epsilon_{2i_2\dots i_n} \mathcal{M}_{2i_2} \mathcal{M}_{3i_3} \dots \mathcal{M}_{ni_n}$$

Show/argue that the second term can be rewritten as

$$\sum_{i_{2},\dots,i_{n}} \epsilon_{2i_{2}\dots i_{n}} \mathcal{M}_{2i_{2}} \mathcal{M}_{3i_{3}} \dots \mathcal{M}_{ni_{n}} = -a_{n} \sum_{i_{2},\dots,i_{n-1}} \epsilon_{2i_{2}\dots i_{n-1}1} \mathcal{M}_{2i_{2}} \mathcal{M}_{3i_{3}} \dots \mathcal{M}_{n-1,i_{n-1}n}$$

(2.3) (1pt)

By looking at non-zero values of \mathcal{M}_{ij} and available indices in nonzero ϵ , show/argue that

$$\sum_{i_{2},\ldots,i_{n-1}} \epsilon_{2i_{2}\ldots i_{n-1}1} \mathcal{M}_{2i_{2}} \mathcal{M}_{3i_{3}} \ldots \mathcal{M}_{n-1,i_{n-1}} = \sum_{i_{3},\ldots,i_{n-1}} \epsilon_{23i_{3}\ldots i_{n-1}1} \mathcal{M}_{3i_{3}} \mathcal{M}_{4i_{4}} \ldots \mathcal{M}_{n-1,i_{n-1}}$$

and so on, ultimately leading to

$$\sum_{i_{2},\dots,i_{n-1}} \epsilon_{2i_{2}\dots i_{n-1}} \mathcal{M}_{2i_{2}} \mathcal{M}_{3i_{3}} \dots \mathcal{M}_{n-1,i_{n-1}} = \epsilon_{2,3,4,\dots,n-1,n,1}$$

(2.4) (1pt)

Show/argue that $\epsilon_{2,3,4,\dots,n-1,n,1} = (-1)^{n-1}$, turning our determinant to

$$\det\{\}_n \mathcal{M} = -\lambda \sum_{i_2,\dots,i_n} \epsilon_{1i_2\dots i_n} \mathcal{M}_{2i_2} \mathcal{M}_{3i_3} \dots \mathcal{M}_{ni_n} + (-1)^n a_n$$

(2.5) (1pt)

Show/argue that $\epsilon_{1i_2...i_n} = \epsilon_{k_1...k_{n-1}}$ for $k_a = i_{a+1} - 1$. Using this information, show/argue that the sum above is actually the determinant for $_{n-1}\mathcal{M}$, hence

$$\det (_n \mathcal{M}) = -\lambda \det (_{n-1} \mathcal{M}) + (-1)^n a_n$$

(2.6) (0.5pt)

Starting with det $(_1\mathcal{M}) = -a_1 - \lambda$, recursively solve for det $(_n\mathcal{M})$. You will find that

$$\det (_n \mathcal{M}) = (-1)^n \left[\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n \right]$$

Therefore, imposing det $(_n \mathcal{M}) = 0$ is actually equivalent to writing down the characteristic equation!

Congratulations, you have found yet another derivation of this cute little equation!

(2.7) Bonus question

(not graded)

The code below constructs the initial square matrix and then computes the determinant of ${}_n\mathcal{M}$ for any value of n:

```
With[{n = 8},
Module[{mat},
mat[n_] :=
Join[Transpose[
Join[{ConstantArray[0, n - 1]},
IdentityMatrix[n - 1]]], {-Reverse@
Table[Subscript[a, i], {i, n}]}];
Echo[MatrixForm@mat[n]];
Simplify[Det[mat[n] - \\[Lambda] IdentityMatrix[n]]]]
```